

Bedeutung der GPC/SEC für Produktentwickluing, Qualitätssicherung und Umwelt

Peter Kilz

PSS, Mainz, Germany

PKilz@pss-polymer.com

Why Bottom-Up Characterization?

- Knowledge-driven design of products
- Utilize structure-property-function relationships
- Apply fundamental knowledge for product development

Goal: faster / better products for specialized use

Key: property determination on molecular level

Technique: SEC with multiple detection

Bottom-Up Product Development

Product

Technical implementation

Establish scaling rules

Understand interactions

Characterize molecular properties

Chromatography as Microscope

Starch size domains

Grain

cm

10⁻³ m

macroscopic properties

Granules

μm

10⁻⁶ m

application properties

Chains

nm

10⁻⁹ m

molecular properties

Elucidation of Starch Structure

Starch structure levels

Starch example of very complex macromolecule:

Co-existence of

- Molar mass distribution (MMD)
- Architecture distribution (MAD)
- End g
- Comp

molar mass influence on application properties

Dry-Milling

- Deformation (Impact, shear)
- Crushing (Impact, pressure)
- Very good CWB, CWS, F-T-S
- Energy necessary 84 kWh/kg

Challenges in milled cereal products

```
++++ Sensory++ Rheo-stability--- Energy balance
```

Wet-milling

- Deformation (Shear, scission)
- Tear to pieces (Shear)
- Good CWB, CWS, F-T-S
- Energy necessary 0.6 kWh/kg

```
+++ Sensory+/- Rheo-stability++++ Energy balance
```

Application Propertiesof Wet-milled Starches

Maize starch

Gel formation: good

Gel stability: very good

Freeze-thaw stab very good

Mouth feel: spongy

Develop structure – function relationship for milling

Wheat starch

Gel formation: good

Gel stability: very good

Freeze-thaw stab very good

Mouth feel: smooth

- dependence on starch source

- influence on MMD

- structural changes

Experimental

GPC/SEC performed with:

- PSS SECcurity GPC System
- PSS GPC columns
- PSS SLD7000 MALLS
- PSS DVD1260 Viscometer
- PSS calibration standards
- PSS WinGPC Software

Maize Starch SEC-DV-MALLS

SEC characterization of starches

SECcurity Triple system time consuming sample preparation

Eluent: 0.3M NaNO₃, pH 10

Columns:

PSS SUPREMA 20µm

Detection:

PSS SECcurity MALLS+Visco+RI

Molar masses: by SLD7000 Viscosities: by DVD1260

Concentrations: by RID

Molar Mass Distributions native vs. wet-milled

Influence of Mechanical Energy

Molar mass loss: 14 – 23%

but maize: 73%

Reason?

Difference to waxy maize?

Influence of Mechanical Energy

Determination of bond cleavages per starch chain most varieties: 1 but maize: 14

homogeneous energy transfer

maize different

Energy Intake

16
14
12
10
8
8
6
4
2
0
Maize Wheat Tapioca Potato Rice

Starch Source

Energy absorption and structural reasons unclear

Starch Branching / Density Change by Mechanical Energy

R_q by MALLS measures size

- only small variation; exception maize: 40% loss
- IV by viscometry measures segment density
- maize starch predominantly degrades branched chains

Energy absorption:

- mostly random
- BUT selective towards maize varieties

Products Optimized by SEC characterization

water

spray dried starch

- Cereals
- Ice cream
- Ready meals, ...

particle gels

- Mayonnaise
- Salad dressing
- Desserts

Polymers in the Environment

Poor Use of Plastics Pollutes Nature

- Production 2015: 320 million tons
 - >1m plastic bottles sold/min

- Most products end in landfills
- Plastics accumulate in oceans
 - → end up in human food chain

Polymer Recycling

Benefits of Polymer Product Re-use

- Reducing plastic waste
- Support sustainable environment
- Saving natural resources (oil, energy, water,...)
- Protect nature
- Prevent thermal re-use of materials

© Huffpost (2013-12-17)

Polymer Recycling

Problem

Reduce plastic bottle waste µ-plastics in sea water

Blend recycled & virgin material without loss of application properties

Challenge

- Predict recycled material tolerated in blended product
- Correlate molecular to macroscopic properties

PET Bottle Processing

SEC Characterization of Products

very simple setup high reproducability

Eluent: TCM + 2%HFIP

Columns: PSS SDV 5µm

Detection:

PSS SECcurity UV & RI Calibration: PSS PSt stds

with universal calibration

K=0.0191ml/g a=0,731

(Weiskopf, J. Polym. Sci., A26, 1919)

PET Bottle Property Prediction (

Property Prediction/Mixing Ratio by SEC Software

1. Use SEC traces of individual products and overlay

trace A: virgin product

trace B: recycled product

- 2. Create "synthetic" trace with mixing estimate
- 3. Enter equation of weighted fractions of materials:

 0.82*A + 0.18*B

4. Calculate mixed product properties

PET Bottle Property Prediction

Property Prediction by SEC Software

Comparison of product requirements/specs with simulation

SEC results vs. specs

PET	IV [ml]/g	Mw [Da]
Virgin (this work)	85	98200
Extruded (this work)	80	89500
Recycled (this work)	73	78900
Regenerated (this work)	79	88700
Target bottle grade	80 ± 1	90000 ± 2000
Target film grade	65 ± 5	68000 ± 2000
Target fiber grade	50 ± 10	47000 ± 5000

TPE world market (2014): 3.82 bn t/a, 16.7 billion US\$

Advantages:

- recyclable/reusable
- similar properties as rubbers
- simple production: no vulcanization
- allows classic plastics processes (molding, extruding, etc)

Styrene block copolymer with diene-based soft segment

Major applications/markets

- electrical insulation
- seals / gaskets
- automotive products
- medical products
- high-toughness sports items

Styrene-based block copolymers - SBS type

Sample A performs according to specs

Sample B fails application tests

SECcurity system

THF @ 1ml/min
PSS SDV columns
UV/RI detection

Customer GPC/SEC results in spec and verified by PSS

Styrene-based block copolymers - SBS type

Studying product characteristics by GPC/SEC

Evaluation criteria

- molar mass
- homogeneity main peak
- by products

Elucidate structure-property function relationship

Establishing application window

Styrene-based block copolymers - SBS type

Good/bad product comparison by IPC

Observations:

- many peaks/components
- differences in conc.
- homogeneity unclear

Performance difference due to composition?

Styrene-based block copolymers - SBS type

GPC/SEC results with multi-detection copolymer analysis

GPC/SEC Overlay

Raw Signal Information: Copolymer Analysis SBS1 SBS2 UV 254 nm RI SBS2 Elution Volume [ml]

GPC/SEC Composition Overlay

2-dimensional analysis for R&D

Styrene-based block (

GPC/SEC results with multi-

Fast screening method for c

Benefits:

- no special sample prepara
- composition results simulta
- no additional user training
- Fast analysis times (2 mi

Requirements:

- UV and RI detector
- detector response calibrati
- PSS WinGPC UniChrom software with copolymer module

Summary

- Bottom-up product development with molecular characterization
 - has significant potential for better products in shorter time
 - supports efficient product application for best-matching markets
 - helps protecting the environment and saves natural resources
- Chromatography, esp. SEC, can play a significant role in
 - establishing structure-property-function relationships
 - investigating macromolecular properties and structural features
 - predict product properties from scaling rules
- Starch wet-milling improves food quality by
 - overcoming taste/mouth-feel issues with classical grain processing
 - prediction of sensoric behavior
- PET bottle recycling benefits from
 - optimized blending of virgin and recycled products
 - consistent product quality
- TPE product quality can be monitored by SEC
 - Molar mass distribution governs application window
 - Chemical composition distribution determines functionality

Thank You

Collaborators:

Prof. Claudia Niemann, HU Berlin

Prof. Robert Gilbert, U Queensland and

PSS team

Sprechen Sie mit uns:

ACHEMA 11.-15.6.2018, Frankfurt Halle 4.1, Stand P48