Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Bürgerabend zu Mobilität

Digitalstadt Darmstadt und Fraunhofer LBF laden ein: 5. Dezember, 19 Uhr in Kranichstein.

mehr Info

Sichere und nachhaltige Kunststoffe

Umweltfreundlicher Flammschutz | Flammschutz bei Hochleistungswerkstoffen | Flammgeschützte Wärmedämmsysteme | Biobasierter Flammschutz

mehr Info

Müde Kunststoffe?

Forscher entwickeln zuverlässiges Werkzeug zur Abschätzung der Lebensdauer

mehr Info

Leicht und sicher

Ultra-leichte Fahrzeugstruktur macht elektrischen Stadtflitzer preiswert und sicher

mehr Info

Smart Digital Solutions

Wir bauen Ihre Strukturen zu cyberphysischen Systemen aus und entwickeln daraus neue, zukunftsfähige Geschäftsmodelle.

mehr Info

Jahresbericht 2018

mehr Info

Kernkompetenzen

 

Forschungsbereich

Betriebsfestigkeit

Die Betriebsfestigkeit bewertet die Auslegung, Bemessung und Haltbarkeit von Bauteilen und Systemen gegenüber mechanischen Beanspruchungen.

Unser Ziel: Komponenten und Strukturen, die belastbar und besonders ressourceneffizient gestaltet sind und im geplanten Einsatzzeitraum zuverlässig funktionieren.

 

Forschungsbereich

Adaptronik

Der Bereich Adaptronik entwickelt moderne, effiziente und zuverlässige Systeme mit optimierter Strukturdynamik sowie smarte Lösungen für deren Überwachung.

 

Forschungsbereich

Kunststoffe

Alle zur Realisierung anspruchsvoller Kunststoff-Anwendungen relevanten Kompetenzen, beginnend bei den grundlegenden naturwissenschaftlichen Disziplinen wie Chemie und Physik über die Materialwissenschaft und Werkstofftechnik in der Verarbeitung bis hin zur Expertise in Analytik, Prüfung und Modellierung,
sind auf hohem Niveau unter einem Dach vereint.

 

Projektbereich

Systemzuverlässigkeit

Die Zuverlässigkeit komplexer mechatronischer sowie aktiver Systeme wird am Fraunhofer LBF gezielt erforscht. Hierfür werden analytische sowie experimentelle Verfahren, aber auch numerische Simulationsmethoden zur Bewertung von Sensitivität und Robustheit angewendet.

 

Fraunhofer LBF

 

Telefon +49 6151 705-0

Fax +49 6151 705-214

info@lbf.fraunhofer.de

 

10.12.2019

Beim Altern lässt die Spannung nach: Neuer mehrkanaliger Prüfstand erfasst Gummialterung

Die Eigenschaften von gummiähnlichen Kunststoffen ändern sich durch Temperatur- und Krafteinwirkung im Verlauf ihrer Nutzung. Für die Produktentwicklung, etwa von Fahrzeugreifen und Förderbändern an Supermarktkassen, ist es deshalb wichtig, Aussagen über die Lebensdauer dieser Elastomere unter bestimmten Einflüssen treffen zu können. Wesentlich dabei ist die Bestimmung der Aktivierungsenergie der thermischen Alterung, die mithilfe der Spannungsrelaxationsmethode einfach und kostengünstig möglich ist. Bislang dauern die Messungen je nach gewählter Temperatur jedoch mehrere Wochen bis Monate. Um das Verfahren zu beschleunigen, haben Forscher des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF einen mehrkanaligen Prüfstand für die Spannungsrelaxation von Elastomeren entwickelt. Damit ist es möglich, die Aktivierungsenergie unter sechs verschiedenen Temperaturen gleichzeitig zu testen und neben der Effizienz auch die Qualität der Lebensdauervorhersage zu verbessern.
Read more

4.12.2019

Gut angelegte Werte: Schwingfestigkeitsdatenbank hilft Kunststoffbauteile nachhaltig auszulegen

Daten gelten als der neue Rohstoff, „Big Data“ ist in aller Munde. Dass die Nutzung von umfassendem Datenmaterial auch bei der Entwicklung von Kunststoffbauteilen in hohem Maße sinnvoll ist, will das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF im kommenden Jahr in einem internen Forschungsvorhaben zeigen. Ziel ist, mit Hilfe einer umfangreichen Datenbasis Wirkzusammenhänge von Schwingfestigkeitseigenschaften bei Kunststoffen abzuleiten. Im Vorfeld haben die Wissenschaftler bereits sämtliche Schwingfestigkeitskennwerte aus Veröffentlichungen, öffentlich geförderten Projekten und Auftragsforschungen in einer Datenbank zusammengetragen. Sie enthält mittlerweile 7.500 geprüfte Proben. Sämtliche schwingfestigkeitsbeeinflussenden Kennwerte sind darin berücksichtigt, was eine detaillierte Auswertung ermöglicht.
Read more

8.11.2019

Digitale Zustandsüberwachung durch Schallemissionsverfahren

Der Einsatz des Acoustic Emission (AE)-Verfahren zur Erkennung von Rissbildung im Gehäuse von Maschinen soll unplanmäßige Ausfallzeiten während des Fertigungsprozess verhindern. Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF stellt dafür seine Expertise in Strukturdynamik sowie ein Laborsystem zur Verfügung. Das Mittelstand 4.0-Kompetenzzentrum in Darmstadt unterstützt mit diesem und weiteren Projekten Mittelständler in der Rhein-Main-Region. In dem Kompetenzzentrum bündeln sieben Partner aus Wissenschaft und Praxis ihr Know-how: Vier Institute der Technischen Universität Darmstadt, zwei Fraunhofer-Institute sowie die Industrie- und Handelskammer Darmstadt.
Read more

7.11.2019

Sie holen die Straße ins Labor: Anwender beraten über zweiaxiale Betriebsfestigkeitsversuche für PKW- und LKW-Räder

Bei Lebensdauertests von Fahrzeugen oder einzelnen Komponenten hat sich in den letzten Jahren Gravierendes verändert: Heute genügen dank modernster Prüfeinrichtungen wenige Stunden im Labor, wo früher tagelange Testfahrten auf der Straße nötig waren. Und die Entwicklung geht weiter, wie die UC 14 - Users Conference on Biaxial Fatigue Testing am 5. November 2019 in Darmstadt zeigte. Zur 14. Anwenderkonferenz für zweiaxiale Betriebsfestigkeitsversuche von Rädern und Radnaben trafen sich mehr als 50 Wissenschaftler und Anwender aus Europa, China und den USA im Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF. Dank vielfältiger Entwicklungs- und Erprobungsaktivitäten auf dem Gebiet der Räderprüfung und -freigabe konnte sich das Institut den Status eines Technologieführers erarbeiten. Die Prüftechnologie ist heute weltweit bekannt und akzeptiert. Sie hat sich als internationaler Standard für mehr Sicherheit im Fahrzeugbau etabliert und verkürzt Entwicklungszeiten von neuen Produkten.
Read more